Facile Synthesis of Fe<sub>3</sub>O<sub>4</sub> Nanoparticles with a High Specific Surface Area
نویسندگان
چکیده
منابع مشابه
Preparation of High Surface Area ZrO2 Nanoparticles
In comparison to the previous researches, ZrO2 nanoparticles with higher surface area (85 m2/g) have been synthesized in this research. The as-prepared ZrO2 nanoparticles by co-precipitation method were characterized with X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The surface area of the s...
متن کاملPreparation and Characterization of High Specific Surface Area γ-Alumina Nanoparticles Via Sol-Gel Method
In the present investigation, γ-alumina nanoparticles with particle sizes less than 10 nm, high specific surface area (351 m2/g), high pore volumes and relatively narrow pore sizes distribution was prepared via sol-gel method in presence of aluminum isopropoxide as an aluminum precursor, distilled water, acetic acid as hydrolysis rate controller and tert-butanol as solvent. They had meso ...
متن کاملSpecific Surface Area Increment of Alumina Nanoparticles Using Mineral Fuels in Combustion Synthesis
Ammonium carbonate and ammonium sulfate have been proposed and used as two new fuels for synthesizing gamma alumina nanoparticles. The prepared samples have been characterized by X-ray diffraction (XRD), 2 N adsorption (BET) and Transmission electron microscopy (TEM). A comparison has been made between the properties of the nanoparticles synthesized by these two fuels and other conventio...
متن کاملpreparation of high surface area zro2 nanoparticles
in comparison to the previous researches, zro2 nanoparticles with higher surface area (85 m2/g) have been synthesized in this research. the as-prepared zro2 nanoparticles by co-precipitation method were characterized with x-ray diffraction (xrd), scanning electron microscopy (sem) and transmission electron microscopy (tem). the surface area of the sample was characterized by bet method. the eff...
متن کاملspecific surface area increment of alumina nanoparticles using mineral fuels in combustion synthesis
ammonium carbonate and ammonium sulfate have been proposed and used as two new fuels for synthesizing gamma alumina nanoparticles. the prepared samples have been characterized by x-ray diffraction (xrd), 2 n adsorption (bet) and transmission electron microscopy (tem). a comparison has been made between the properties of the nanoparticles synthesized by these two fuels and other conventional fu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: MATERIALS TRANSACTIONS
سال: 2014
ISSN: 1345-9678,1347-5320
DOI: 10.2320/matertrans.m2014184